مقّدهـ نــــر

رشتهٔ تجربى در كنار همأ سختىها و دشوارىهايش يك درس جذاب داره به نام "(زيستشناسى). اصلاً مىشه كفت تفاوت اين رشته با بقئُ رشتهها سَرِ همين درسه! يعنى دانشآموزها ميرن تجربى كه زيست بخونن و پزشك بشن، اما خب قطعاً همونطور كه پپشكشدن جذابه و خيلى ازش انگیيزه مىگيرين، بايد از راهى كه طى مى كنين تا به پزشكشدن برسين همم لذت ببرين؛ يعنى از زيستخوندن در واقع ما اين كتاب رو نوشتيم كه شما از خوندن زيست لذت ببريد. شايد بیرسيد چهطورى؟

حتماً موافقيد كه بعد از خوندن كتابهاى ديگئ زيست، مرور سريع مـهمترين نكات، اين درس رو خيلى شيرينتر مى كنه. پس اين كتاب رو بخونيد و لذتش رو ببريد. از همكاران محترم كه زحمت تأليف، توليد و چاپ این كتاب رو كشيدن، خيلى ممنونيه.

مقا

 كنكورىام را در يك قالب جديدِ تو دل برو و جمعوجور، مانند كتابهاى (اجىبى)" تأليف و منتشر كنمه. پس به قدرت خداى قادر و با همراهى همكاران تأليفم دست به كار شديم و با تكيه بر تجربيات 19 سال تدريس و تأليف، كتابى براتون نوشتيم ("همهچى تموم!"، بنابراين؛ خواهشاً به قد و هيكلش نگاه نكنين كه چقد كوچيكه؟!

 كاربردى را با دستهبندىهاى منطقى و منظم ارائه كنم تا به خا خوبى در ذهن شر شريفتون تثبيت شده و ماندگار بمونه!
ويزگى هاى مهم درسنامه: ال1 جهت تأكيد بيشتر بر اهميت يادگيرى يكى مطلب آموزشى از

 از كتابهاى زيست دهم و يازدهم جیىی، علاوهبر مرور و جمعبندى مطالب آموزشى كتابٍ

همان سال، مىتونيد با مطالعٔٔ مطالب تركيبى هر سه كتاب در مامهاى پايانى منتهى به كنكور سراسرى، با آمادگى 100 درصدى به موفقيت در كنكور و قبولى در رشتى درئى

 موقعيت زمانى، براساس هدف آموزشىتون به مطالعئ آنها بپر بیازدازيد!
 انواع پرسشها، وجود يك بخش پرسشى از ضروريات يه كتاب كمكآموزشيه! بنابراين از
 جـ بخش ياسخنامه: ارائه يك پاسخنامئ تشريحى براى بيان دليل نادرستبودن عبارتها

اين اثر و تحفُٔ ناقابل را پيشكش مىكنم به: ميـؤ دل پيامبر اسلام حضرت محمّد

 آقايان دكتر اصغر زمانى، دكتر نعمتالله راعى نياكى و مازيار اعتمادزاده، ابراهيم

 و در پايان از تمام همكاران پُرتلاش، نجيب و باحال واحد هميشهسبز توليد انتشارات. عبّـــاس راســتـى بــروجنى

فصل
مولكول
(1) His

دستورالعمل فعاليتهاى ياخته در كروموزومهاى درون هسته ذخيره
 ىDNA
|آزمايشنهاي كُريفيت و نتّايج آن
| در دوران زندگى (اگرَيفيت)" باكترىشناس انگَليسى، تصور مىشد باكترى
 توليد واكسن آنفلوانزا، با دو نوع از اين باكترى (پوشينهدار و بدون پوشينه) آزمايشهايى را روى موشها انجام داد.

(\%) 9

نتيجهٔ كلى: مادةٔ وراثتى مىتواند به ياختأ ديگرى منتقل شود ـــه اگر ماهيت اين مادهٔ وراثتى و چگَونگى انتقال آن مشخص نشد!

ورى
 هر دو نوع باكترى متعلق به يكى گونئ باكترى به نا نام استر يتو كو كوس
 افراد گونهاى ديگر را در خود دارند.

آزمايشهاى گريفيت و نتايج آن

 خط دوم و سوم دفاعى فعال مىشورد.

 را به ششها رسانده و در آنجا بيمارى سينهيهلو را ايجاد مى كند.

فصل ا: مولكول هاى اطلاعاتى ؛ درسنامه
(\#) باكترى كروىشكل به نام استرپتوكوكوس نومونيا را احاطه مى كند. (1) در اثر گرما، ساختار پوشينهٔ باكترى، سالم مانده و آسيب نمى آبيند، در حالى كه

 نهايت، صفت پوشينهدار شدن را به باكترى فاقد آن منتقل مى كند).

زيستا|،فصله پس از تزريق باكترى به موشها، ابتدا خط دوم دفاعى يعنى درشتخوارهاى موجود در كيسههاى حبابكى، فعال
 كه در فعالشدن لنفوسيتهاى B مؤثرند، فعال مىشود.

 نهايت به مرگ منجر شود!

| مولكول DNA؛ عامل اصلى انتقال صفات وراثتى ||

- حدود 18 سال بعد از گريفيت، در اثر تحقيقات ايورى و همكارانش، (دنا) به عنوان عامل مؤثر در انتقال صفات وراثتى (مثلاً صفت انرا پوشينهدار شدن باكترىهاى فاقد پوشينه)، مشخص شد.
>آزمايشهاى ايورى و نتايج آن آزمايشاول:
Iا استخراج و استفاده از عصارءٔ باكترىهاى كشتهشدهٔ پوشينهدار Y تخريب تمامى پروتئينهاى موجود در عصاره با افزودن آنزيمههاى تجزيه كنندهٔ پروتئين به آن
? اضافهكردن باقىماندهٔ محلول به محيط كشت باكترى فاقد پوشينه وو نتيجهe ع انتقال صفت انجام مىشود، پس پروتئينها، مادهٔ وراثتى نيستند!

آزمايش دوم:
إ قراردادن عصاره استخراجشده از باكترىهاى كشتهشدهٔ پوشينهدار،
در يى گريزانه (سانتر يفيوز) با سرعت بالا.
ج
جـ اضافهكردن هر يك از لايهها به صورت جداگانه به محيط كشت باكترى فاقد پوشينه
وو نتيجهع انجام انتقال صفت فقط با لايهاى كه DNA (دِنا) در آن وجود دارد، امكانچذير است.

آزمايش سوم:
الـار استخراج عصارء باكترىهاى كشتهشدهٔ پوشينهدار و تقسيم آن به چههار قسمت (ظرف)
(پروتئاز، نوكلئاز و كربوهيدراز) به هر ظرف
P انتقال محتواى ظرفهاى مختلف به محيط كشت حاوى باكترىهاى زندهٔ بدون پوشينه
P فرصتدادن به باكترىها براى انتقال صفت و رشد و تكثير آنها

فصل ا: مولكول هاى اطلاعاتى ؛ درسنامه

9ونتيجهع " در همهٔ ظرفهاى محيط كشت، انتقال صفت پوشينهدار شدن
 تخريبكننده DNA است.
[نتّيجهُقطعىنهارى] عامل اصلى انتقال صفت وراثتى، از جاندارى به جاندار ديگر يا از نسلى به نسل ديگر، مولكول DNA است.

ساختار نوكلئيك اسيدها

> نوكلئيك اسيد

إه انواع --() ريبونو كلئيكى اسيد (رِنا يا RNA)

- انواع نو كلئيك اسيدها، پبيمر (بَسپار) هايىاند كه از واحدهاى تكرارشونده (مونومرى) به نام نو كلئوتيد تشكيل مىشوند.
 لـ الـ واحدهاى RNA سازنده:
 نوكلئوتيد دوحلقهاى و شامل آدنين (A)
 لـ
تكحلقهاى و شامل تيمين (T)،
سيتوزين (C) و يوراسيل (U)

> (1) به علت منفى:بودن بار الكتريكى گروه فسفاتِ (هر نوكلئوتيد، نوكلئيك اسيدها بار منفى دارند. (1) با وجود آن كه
 (بازهاى آلى)، ولى آنها در مجموع، خاصيت اسيدى دارند.

اجزاى يك نوكلئوتيد
 دوحلقهاى (يورينها)، يكى حلقةٔ وضلعى و يك حلقءٔ فضلعى دارند كه از طريق حلقةٔ Dضلعى خود به قند Dكربنى توسط پیوند اشتراكى متصل مىشوند.
 دارد. (D در ساختار DNA، باز يوراسيل (U) شركت ندارد و به جاى آن، باز تيمين (T) وجود دارد، در حالى كه در ساختار RNA به جاى باز تيمين، باز يوراسيل به كار مىرود. (1) نوكلئوتيدها به صورت آزاد مىتوانند ا تاس گر گروه DNA فسفات داشته باشند، ولى زمانى كه مى خیواهند در ساختار پليمرى يا RNA (رنا) شركت كنند به صورت تكفسفاته درمى آيند.

است، البته نوعى نوكلئوتيد آزاد تكـفسفاته نيز داريم؛ مانند AMP].

فصل ا: مولكول هاى اطلاعاتى ! درسنامه

■ ابر ای تشكيل يكر شتهٔ پلىنو كلئوتيدى،نو كلئوتيدها(مشابه يامتفاوت)بانوعى پيوند اشتراكى به نام فسفودىاستر به هم متصل مى شوند ـــه براى تشكيل پیوند فسفودىاستر، فسفات يک نو كلئوتيد به گروه هيدروكسيل (OH) از قند Dكربنى مربوط به نوكلئوتيد ديگر متصل مىشود.
 عاملهاى اتصال بين نوكلئوتيدها هستند =ٍ فسفات هر نو كلئوتيد به قند نو كلئوتيد بعدى متصل مىشود. (1) پيوند فسفودىاستر، نوعى پيوند شيميايى است كه در یی رشتأ پلىنوكلئوتيدى، بين دو قند Dكربنى مجاور هم كه هر كدام متعلق به يك نوكلئوتيد مجز| هستند به وجود مى آيد. در واقع پيوند فسفودى استر از دو پيوند قند ـ فسفات تشكيل شده است:) قند ـ فسفات دروننو كلئوتيدى و 「٪) قند ـ فسفات بين نو كلئوتيدى
 تعداد پيوندهاى فسفودىاستر در يکى (N) رشتهٔ پلىنو كلئوتيدى خطى، همواره يک عدد كممتر از تعداد پیيوندهاى فسفودىاستر در يك رشتأ پلىنوكلئوتيدى حلقوى است. B در يک رشتهٔ پلىنو كلئوتيدى، باز آلى پيريميدنى، يک مولكول حلقوى צضلعى است كه با يك مولكول حلقوى Dضلعى (و نيز هكربنى) اتصال برقرار مى كند.

باشهـا رشتههاى پلمنو كلئوتيدى يا به تنهايى (تكرشتر رشتهاى)،

 .

دو رشتهاى و RNA تكرشتهاى DNA

 ممكن است تنها بين چچند نوكلئوتيد آن، پيوند هيدرورثنى ديده شورا

 زيرا اگر بازهاى آلى روبهروى هم مكمل يكديگر نباشند جفتشدگى

فصل ا: مولكولهاى اطلاعاتى ؛ درسنامه
صورت نمى گیرد! (\#) منظور از جفت باز، دو باز مكمل و روبهروى همم است كه هر كدام در يک رشتهٔ پلىنوكلئوتيدى دنا قرار دارند و با پيوندهاى هيدروزنى به يكديگر متصل مى شوند.

شكلهاى مختلف نوكلئيك اسيدها

(1) - نوكلئيكاسيدحلقوى: هنگًامى كه دو انتهاى رشتههاى پلىنو كلئوتيدى (دى

 هوهستهاىها).
(1) - نوكلئيكاسيدخطى: هنگامى كه گروه فسفات در يک انتها و گروه
 گیيرد ص٪ در رشتههاى پلىنو کلئوتيدى دنا و رناى خطى، جدا از اندازه و تعداد مونومرهايشان، هميشه دو انتهاى متفاوت وجود دارد.

تلاش براى كشف ساختار مولكولى DNA

 است با مقدار تيمين (A = T) و مقدار گوانين در آن برابر است با مقدار سيتوزين (C=G)
 تحقيقات بعدى دانشمندان، دليل آن را مشخص كرد در الئ

DNA
 تصاويرى تهيه كردند و به نتايج زير دست يا يافتنتند ■ إ مولكول DNA، حالت مارپيحیى داشته و بيش از يك رشته دارد. DNA تشخيص ابعاد مولكول [
>مدل مولكولى DNA واتسون و كريک با استفاده از نتايج تحقيقات چارگاف و دادههاى
 نردبان مارييج را ساختند.
<نكات كليدى مُـدل واتسون و كرييك 1
 Y ستونهاى آن و پلههاى اين نردبان، جفت بازهاى آلى هستند كه بين قند يک
 همحچنين، هر باز آلى از يكى طرف با مولكول حلقوى قند، پیيوند اشتراكى دارد

 اختصاصى تشكيل مىشوند صٍ P هيدروزنى بيشترى تشكيل مىشود.

 به دليل جفتشدن بازهاى مكمل، با شناسايى تر تيب نوكلئوتيدهاى سازندهُ هر رشتهٔ DNA ترتيب نوكلئوتيدهاى رشتهٔ ديگر نيز مشخص مى نـوشود.

فصل ا: مولكول هاى اطلاعاتى ؛ درسنامه
V اگرچه هر پيوند هيدروزنى به تنهايى انرزی پيوند كمى دارد، ولى
 پايدارترى مىدهد صٍ البته 「 رشتأ دنا در هنگًام نياز (مثلاً در زمان

 RNA \triangleleft
: مولكول RNA نوع ديگرى از نوكلئيكى اسيدها بوده كه تكرشتهاى است و از روى بخشى از يكى از رشتههاى DNA ساخته مىشود. انواع ونقش RNA
 ريبوزوم با استفاده از اطلاعات آن، پروتئينسازى مى كیند. t RNA (1رناى ناقل): آمينواسيدها را براى استفاده در پروتئينسازى به محل ريبوزومها منتقل مى كندا (رندي) RNA rRNA (رناى ريبوزومى): در ساختار ريبوزومها علاوه بر پروتئين،
ريبوزومى نيز به كار مىرود.
rRNA (رناهاى كوچک) در تنظيم بيان زن، نقش و دخالت دارند.

تعريف: اطلاعات وراثتى در DNA قرار داشته و از نسلى به نسل ديگر منر منتقل

 مى تواند RNA يا پِلى پیتيد توليد شود. RNA

(t) 19

دستورالعملهاى DNA (ثن) را اجرا مىكند، مانند زن توليد هموگَلوبين يا زن گروه خونى.

هدخخالت نوكلئوتيدها در واكنشههاى سوخت و سازى
■ نوكلئوتيد آدنيندارِ ATP (آدنوزين ترىفسفات)، به عنوان منبع انرثى

ت نو تلئوتيدها، در ساختار مولكولهاى حامل الكترون در فرايندهاى تنفس ياختهاى و فتوسنتز به كار میروند.

و NADPH)، مولكولهاى حمل كننده و انتقالدهندهٔ الكترون به
 رفته كه يكى از آنها، آدنيندار است و و در هر هر نوكلئوتيد حداقل يكـ گروه فسفات وجود دارد.
 قند ريبوز است. () در ساختار تمام مولكولهاى ناقل الكترون ذكرشده در بالا و ناقل انرزى (ATP)، باز آلى آدنين يافت مىشود.

ه هدرستى يا نادرستى عبارات زير را مشخص كنيد.

r- r- در هر رشتهٔ مولكول DNA داراى NN غير حفاظتى در محيطكشت N N r- د- در همانندسازى نيمهحفاظتى همانند طرح غير حفاظتى و بر خلاف طرح حفاظتى، پيوند هيدرورثنى DNAى اوليه شكسته میشود. ٪

 همانندسازى وجود دارد.
ط-V كروماتيد مادرى و دخترى وجود دارد ارد.
^- در همانندسازى حفاظتى همانند نيمهحفاظتى هر رشتى رشته دنا مادرى به طور كامل حفظ مىیردد.

فصل ا: مولكول هاى اطلاعاتى :\% پرسشنامه

9- هر مولكول دناى حاصل از همانندسازى غيرحفاظتى مانند همانندسازى نيمهحفاظتى و برخلاف حفاظتى قطعاً نوكلئوتيدهاى مادرى داردي
 همانندسازى فاقد قدرت شكستن پيوند فيند فسفودى استري استر است.
 گوارش يكى نقطهُ آغاز همانندسازى داردي (إلىمراز با فعاليت نوكلئزازی خود قادر است بعد از انجام DNA آ- آنزيم همانندسازى DNA، آن را ويرايش كند.
 تعداد DNA تلىمراز بيشتر از هليكاز است.
if نقاط آغاز همانندسازى تغيير مى كند.

 19- طى فرايند تمايز برخلاف رشد (از طريق افزايش تعداد ياختهها)، تعداد نقاط آغاز همانندسازى كاهش میى يابدريد

 1^- در ياختههاى كامبيوم آوندساز برخلاف ياختههاى آوندى آنزيم DNA آلىمراز فعاليت مى كند. 19- هور مون اريترويويتين ساختهشدن آنزيم DNA اپلمىراز را در مغز قرمز استخوانهاى پِهن افزايش مىدهدد.

هـه - در يك مولكول DNA، تعداد بازهاى پورينى يا پيريميدينى كمتر از (سراسرى) پيوندهاى هيدروزنى يا فسفودىاستر است.

فصل 1: مولكولهاى اطلاعاتى ؛ٍ پرسشنامه

هو- در باكترىها امكان دريافت مادهٔ زنتيكى از محيط خارج و اضافهشدن ويرگًى جديد در اثر DNA غيراصلى وجود دارد. در تشكيل ساختار نهايى پروتئين ميوگَلوبين، فقط سه نوع پیوند - دV (سراسرى (9) دخالت دارد. ه人 زيرواحد تاخورده است. (سراسرى ^१) - D9 - پروتئين ميوگَلوبين، با دارابودن رنگَدانههاى فراوان، توانايى ذخيره انواعى از گَازهاى تنفسى را ها دارد. ¢- در يوكاريوتها، فقط يكى جايگاه آغاز همانندسازى در DNA آنها (سراسرى 9 (9 (وجود دارد.

اء- در يوكاريوتها، در دو انتهاى هر يكـ از رشتههاى DNA آنهانا، (سراسرى 9 (س) تر كيباتى متفاوت وجود دارد.
 (سراسرى و خارج از كشور ^) (~) پيوند فسفودىاسترى وجود دارد. سタ- در بخشهايى از پروتئين ميوگلوبين، ساختارهاى متنوعى و جود دارد. (خارج از كشور ه^)
-9F ساختار نهايى پروتئين ميوكَلوبين، با تشكيل بيش از يك نوع پيوند، (خارج از كشور ^१) تثبيت مى شود. 90- در پروتئين ميوگَلوبين، با تغيير يكى آمينواسيد، ممكن است ساختار و
 צ4- در يو كاريوتها، در هر كروموزوم، مىتواند جايگًاههاى همانندسازى (خارج از كشور ^१) متعددى به وجود آيد.

چاسخنامهُ تشريحى

 است، هم در جانداران يوكاريوتى و هم در جانداران پرو انراريوتى.

$$
\begin{aligned}
& \text { r- }- \text { درست }-10 \\
& ~
\end{aligned}
$$

 جديد، ولى در ساير مولكولها (Y (Y
 همانندسازى مرحلئ S ندارد.
 بيرونى پوست و آوند آبكشى و آوند چوبى (تراكئيد و عناصر آوندى)، هسته و

 بخشهايى از DNA مادرى و DNA دخترى دارد.
-
 مادرى و مولكول دDNAى ديگر، فقط نو كلئوتيدهاى جديد ديد دارد د. ولى هر مولكول

 ا11- نادرست؛ زيرا اغلب پيشهستهایهها (باكترىها)، فقط يك جايگاه آغناز دارند و نه همأ آنها! rا- نادرست؛ چون ويرايش هموارْ هارْ در حين همانندسازى DNA صورت مى گیيرد و وَه بعد از اتمام آن!!
rו- نادرست؛ در هر نوع همانندسازى DNA، همواره تعداد DNA يلىمراز بيشتر از هليكاز است.

 نمىشوند، تعداد نقاط آغاز همانندسازى در آن ها تغاي آييرى نمى كندا
 يكسان بوده و در سيتوپالاسم است، چون آن ها هسا هستؤ ساز مانيافته ندارند.
19- درست
 بلكه طى اين مرحله، بيان ثنهاى متفاوت باعث تمايز ياختهها مى شود. 14- درست
19- درست؛ هورمون اريتروپيوتين سبب تحريك تقسيم ياختههاى بنيادى خونساز مغز قرمز استخوان مىشود.

$$
\begin{aligned}
& \text { ت } \\
& \text { - }
\end{aligned}
$$

هV

 ههمانندسازی در DNA الی خود دارند.

「Y- نادرست؛ نوكلئيك اسيدها كه شامل دئوكسىريبونوكئيكيك اسيد هستند، همگى پليمرهايى از واحدهاى تكرارشونده به نام نوكلئوتيد هستنـند. پيوند فسفودى|ستر بين دو نوكلئوتيد مجاور برقرار مىشود و و درون ساختار نوكار نولئوتيد وجودندارد.

س ميو گلوبين، مىتوان ساختارهاى متنوعى مثل صفحأ مارپيتج را مشاهده كرد.
 و اشتراكى است.
 تغيير شديد ساختار و عملكرد يكـ پروتئين شود.
 جايگاه آغاز همانندسازى ايجاد مىشود.

